Halo teman-teman semuanya? Kali ini kita akan membahas tentang perbandingan dalam matematika. Perbandingan adalah suatu bentuk perbandingan antara dua bilangan atau lebih, yang dapat diungkapkan dalam bentuk pecahan atau rasio.
Perbandingan ini seringkali digunakan dalam berbagai bidang, seperti ilmu ekonomi, fisika, dan matematika tentunya. Oleh karena itu, penting bagi kita untuk memahami rumus perbandingan matematika agar bisa mengaplikasikannya dalam kehidupan sehari-hari.
Pada artikel kali ini, kita akan membahas tentang rumus perbandingan matematika dan juga akan disertai dengan contoh soal yang mudah dipahami. Jadi, ayo kita simak dan pelajari bersama-sama agar kita bisa lebih menguasai konsep perbandingan dalam matematika.
Pembahasan Rumus Perbandingan Matematika yang Mudah
Perbandingan berbalik nilai sendiri, adalah perbandingan dari dua buah nilai yang berasal dari besaran yang sejenis. Di dalam perbanding berbalik nilai ini, jika ada suatu niali komponen yang naik, maka nilai komponen yang lain akan turun.
Contoh simple nya seperti, ketika anda pergi ke sekolah anda menggunakan sepeda dan dikayuh dengan cepat, dibandingkan ketika anda mengayuh dengan kecepatan yang lambat. Maka ketika anda mengayuh dengan cepat, anda akan sampai ke sekolah dengan waktu yang cepat juga.
Begitu juga ketika mengayuh sepeda dengan lambat, maka anda akan membutuhkan waktu yang lama untuk sampai di sekolah.
Untuk lebih mudahnya, anda bisa melihat contoh dibawah ini:
Kecepatan (Km/Jam) Waktu Tempuh (Jam)
60 2
40 3
30 4
20 6
Jika melihat contoh diatas, kita bisa mengambil kesimpulan, jika kita menuju ke suatu tempat dengan kecepatan yang tinggi, maka dibutuhkan waktu yang pendek untuk sampai ke tempat itu.
Untuk dapat menghitung perbandingan berbalik nilai, pastinya anda membutuhkan rumusnya. Tenang saja, berikut adalah rumus perbandingan berbalik nilai:
A1/b2 = A2/b1
Untuk lebih jelasnya, bagaimana penggunaan rumus diatas, berikut adalah beberapa contoh yang sudah kami sediakan untuk anda.
Contoh Soal 1
Sebuah pembangunan rumah dapat selesai dalam 60 hari ketika dikerjakan oleh 30 orang pekerja.
Jika rumah tersebut harus selesai dalam waktu 15 hari, berapakah pekerja yang dibutuhkan ?
Penyelesaian :
Diketahui :
jumlah pekerja (a1) = 30 orang
waktu penyelesaian (b1) = 60 hari
waktu penyelesaian (b2) = 15 hari
Dit : jumlah pekerja (a2)?
Jawaban :
a1/b2 = a2/b1
30/15 = a2/60
15×a2 = 30×60
15 a2 = 1800
a2 = 1800/15
a2 = 120
Jadi agar rumah tersebut selesai dalam waktu 15 hari maka pekerja yang dibutuhkan sebanyak 120 orang.
Contoh Soal 2
Pak Adi mempunya 5 buah mesin cetak, dan 5 buah mesin ini dapat menyelesaikan pembuatan poster dalam waktu 40 menit.
Jika Pak Adi menambahkan 3 mesin lagi sehingga jumlah mesin pak Adi ada 8 buah. Berapakah waktu yang dibutuhkan untuk menyelesaikan pembuat poster dengan 8 buah mesin?
Penyelesaian :
Diketahui :
jumlah mesin (a1) = 5 buah
waktu yang dibutuhkan (b1) = 40 menit
jumlah mesin (a2) = 8 buah
Dit : waktu yang dibutuhkan (b2) ?
Jawaban :
a1/b2 = a2/b1
5/b2 = 8/40
8×b2 = 5×40
8b2 = 200
b2 = 200/8
b2 = 25
jadi waktu yang dibutuhkan untuk menyelesaiakn poster dengan menggunakan 8 buah mesin yaitu 25 menit.
Artikel Lainnya:
- Pembahasan Rumus Persentase Matematika
- Pembahasan Rumus Matematika Bangun Datar
- Pembahasan Rumus Perbandingan Dalam Matematika
Nah, bagaimana menurut anda rumus perbandingan diatas? mudah atau sulit? Menurut penulis sendiri rumus perbandingan matematika diatas termasuk mudah untuk dipahami.
Itu dikarenakan rumus ini belum masuk dalam kategori rumus yang sulit.
Demikian artikel tentang rumus perbandingan matematika. Semoga artikel rumus perbandingan matematika ini dapat bermanfaat untuk anda dan dapat menambah pengetahuan anda. Sekian dan terima kasih telah membaca!